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STEADY STATE TREATMENT OF RELATIVISTIC ELECTRON BEAM EROSION

I. INTRODUCTION

When a highly relativistic electron beam propagates through

initially un-ionized gas, the radial forces due to space charge and

the beam magnetic field nearly cancel at the beam head. Consequently

the beam head is not self-pinched, and electrons there spread out

radially at a rate governed by the beam emittance. Behind the freely

expanding head, ionization of the background gas raises the conduc-

tivity and neutralizes the space charge, and the increasing beam

azimuthal magnetic field pinches the beam to an equilibrium radius

determined by the balance of beam pressure and the radial magnetic

force. When the background gas is pre-ionized, current neutralization

causes a similar expansion of the beam head, and beam pinching then

occurs as the return current decays resistively. In either case the

beam takes on a characteristic "trumpet" shape.

The continual expansion of the beam head causes the ionization

rate near the head to drop. Consequently, the region where the pinch

force builds up, referred to here as the "pinch point", moves back

toward the body of the beam. This recession of the pinch point from

the head slows down as the head radius becomes large, until a second

effect becomes important: for a highly relativistic beam,energy loss

due to the induced axial electric field ahead of the pinch point



reduces the relativistic mass of beam electrons and appreciably increases

radial expansion. After an initial transient period of head expansion,

the two effects together cause an almost steady movement of the pinch

point back into the beam and a continual effective loss of the head.

This beam head "erosion" can significantly affect the stability and

propagation characteristics of a high--energy electron beam.

Several groups have studied beam head erosion and have informed us

of their unpublished results. Both Biegalski1 and Lee 2 have derived

analytic estimates of the erosion rate using simple energy-balance

arguments. To study beam structure and verify the predicted erosion

2 3rate scaling, Lee and Brueckner have made time-dependent calculations

of axial beam profiles using radially-averaged beam equations. Similar
4

calculations have been carried out by Hubbard et al. and by Johnston

et al. 5 with more elaborate models of conductivity production and the

beam fields.

The present work obtains erosion rates for relativistic electron

beams by a different method. Since the erosion rate reaches an approx-

imately constant value when the head has expanded sufficiently, we

assume that the beam axial profile is stationary in a frame of reference

moving with the pinch point. This assumption leads to a time-

independent set of radially-averaged beam equations that we solve

numerically to obtain both the pinch frame velocity and the axial

beam profile. This method requires substantially less computation than

time-dependent profile calculations and gives the erosion rate un-

ambiguously. Details of the model are presented in Sec. II along with

2



the methods used to solve the beam equations. Section III gives

results of the model: An analytic approximation of the beam head erosion

rate is derived and used to reduce the beam equations to a simpler

dimensionless form. These equations show that the beam axial profile

depends principally on the dimensionless parameters that determine the

gas conductivity. We propose analytic scaling laws for the beam

radius, pinch force, and conductivity, and compare the analytic pre-

dictions with extensive numerical solutions. Section IV then summarizes

the conclusions.

3



II. MODEL

A. Assumptions

The configuration considered here is an axisymmetric beam of

relativistic electrons moving paraxially in the positive z direction.

For convenience, the beam head position at time t = 0 is chosen to be

z = 0, and the beam source is at z = --. There are no externally-

generated fields. We take the beam current Ib to be small compared

with the Alfven limit IA = 17 (y
2 - 1)1/2 kA, where y is the relativ-

A

istic factor of typical beam electrons. Since this requirement ensures

that the transverse velocity of beam particles v is small compared

with the axial velocity v., we make the "paraxial beam" approximation,

consistently neglecting terms of the order of v2/v2 compared with unity.

Also, we assume that y Z 5 everywhere, so that v Q c, and the relativez

axial motion of beam electrons is negligible.

In this paper we do not consider instabilities, such as the

well known resistive hose instability. The development of a beam is

then a time-dependent axisymmetric process involving both the radial

and axial dimensions. In this work we make three approximations that

allow a one-dimensional time-independent formulation:

1. We take Ib, y, and the beam emittance to be time-independent

at the source throughout the pulse, and we neglect changes in beam

emittance and energy due to collisions and radiation. These single-

particle loss processes are instead assumed to cause only gradual para-

metric changes in the beam erosion rate and axial profile. However,

changes in y due to the collective electromagnetic fields of the beam

4



are calculated self-consistently; these effects are very strong near

the pinch point and are essential features of beam head evolution.

2. All beam quantities are assumed to depend on z and t only

through the combination C E V t - z, where V -Bc < v is the effec-p p z

tive pinch-point velocity in the laboratory frame of reference. This

assumption implies that the beam structure is stationary in a frame

moving with velocity V p. Although the beam head, located as o' is

obviously moving relative to this pinch frame when V < v, we show
p z

later that the expanded beam head near o has little effect on the

0pinch structure when the radius at C 0 has become large compared with

the pinched radius. Also, we assume that the beam tail, at C + L,

is well behind the pinch point. Mathematically, the stationary-

profile assumption implies that

L= Oc Lat @

a a (1)

z 7 Z

where B V /c must still be determined. Using the fact that

vz  c >> v for beam electrons, we also write all total time

derivatives as

d + c - (1 - c . (2)

3. The beam radial profile is assumed to change self-

similarly as the beam radius expands. We therefore model the beam

fields and current density and the background conductivity by

functions of the form



f(r,C) = f(O,C) F (r/R), (3)

where r is the radial coordinate, R(O) is the mean beam radius, and the

radial envelopes F(r/R) are functions with F(0) = 1. This assumption

avoids a self-consistent calculation of the beam radial structure and

permits analytic radial averaging of the beam equations. We find that

calculated head erosion rates and axial profiles are insensitive to the

choice of radial dependences.

With these assumptions, we can write the equations for the

beam radius and energy and the radially-averaged fields and conductivity

as a set of coupled ordinary differential equations in the variable C,

with the dimensionless pinch-point velocity B appearing as a "nonlinear

eigenvalue".

6



B. Envelope Equations

To clarify the assumptions involved, we review the derivation

of the equations for the beam radius and mean particle energy from the

single particle equation of motion. For a collisionless nonradiating

electron in electric field E and magnetic field B, the relativistic

equation of motion is

d e , +Y xB (4-(yv) = -- (+ E , (4)

dt m

where, -e and m are respectively the electron charge and mass, and

Y - (1 - v'v/c2) - /2 is the ratio of total particle energy to rest

energy mc2 . The dot product of y with (4) gives the energy equation

dy e
- - ;=- vE.

If terms of the order of (v /c)2 and y-2 are discarded, then (4) yields

d (Y !L - r ( 6)
dttdt

where w2  - e(B -Er)/(mr) is the nonrelativistic betatron frequency,

and (5) reduces to

dv -- E (7)
mc z

Since beam electrons traverse much of the beam cross-section

while performing betatron oscillations, it is a reasonable approxi-

mation to neglect any correlation between the energy mc2y of an electron

and its radial position r. (The limitations of this approximation, and

effects due to spread y and y-r correlation, are discussed in Ref. 6.)

We therefore assume y is a function of only and write an averaged form

of (7),

7



dy e -

mc ez Me (E) (8)dt mc mc z

where Fz is the average axial electric field acting on electrons in aza

thin beam segment. Explicitly, we define the average of any quantity

f(r,) over the beam cross section as

<f dr r nbf, (9)

0

where nb(r,) is the beam number density, and

Nb 2- 2 drrnb (10)

0

is the number of beam electrons per unit length.

To derive an equation for the root-mean-square beam radius R,

appropriate moments of (6) are averaged over the beam cross section,

and self-similar expansion is assumed (but it is not necessary to

assume any particular self-similar form). The resulting envelope

7.
equation, derived in more general form by Lee and Cooper , is

d R!(y L ) + yR2 wr 2  =0. (11)

The beam is assumed to be in quasi-static force balance at its tail,

so that the time derivatives of y and R vanish there. Slow

variation of y and R at the beam tail will be treated in Sec. IIE as a

parametric variation of the boundary conditions. The first integral of

(11) is then

8



d (, dR eu YLR UL
d Idt/ rnR YR /,L (12)

where U E <r(Be - Er)>, and the subscript L denotes quantities at L"

We use the steady-state relation (2) to rewrite (8) and (12)

as time-independent equations for the beam radius and energy:

d ( R) e (U YLRJL
dC - (1-a) 2mc 2  

--y-- (13)

e (14)(1-8mc2  z

9



C. Field Equations

Since the beam magnetic field only appears in (13) combined

with the radial electric field in U - <r(Be-Er)>, we reduce Maxwell's

equations to a pair of equations for u -r (B8 -Er ) and E z. In the

absence of external magnetic fields and azimuthal currents, the com-

ponents of B and E in a cylindrical geometry are B - (0,B e , O) and

= (Er O,Ez ), and the pertinent components of Maxwell's equations in

Gaussian units are

(rB) =- (J + GE) + 1 E(15)r ar a (15) a

aBe 47r 1E rTB- c (J + aEr) + 1 (16)

rE rE 1 aBt

a 1 3Be 
(17)az ar c at

where J and J are components of the beam current density and a is ther z

scalar background conductivity. When (15) - (17) are written in terms

of using (1), the equations can be combined to give

4Ba 4 UB+8 8Ez + 4a(1 + ) (Be-E r ) + - (Be - E c- Jr ar C Be (18)

= - (B -Er) - (1-B) -- (19)

a (rB) 3 EZ + -4 E + - J--" (20)

10



The radial beam current J is eliminated by invoking charge
r

conservation. In terms of 1, the continuity equation is written

an b 1 3 9
-ec - + - - (r Jr) (21)

and with Jz -ecnb' this yields

1- (22)
r 2'rr 3;

where
r

I(r) s 27r dr'r'J'J z
0

and J' denotes J (r). Using (22), we rewrite (18) and (19) as az z

coupled pair of equations for u and Ez

( u 4icr 2(1-$) a1 3E_ Z2CLB 3C+ cu C 87 + r 3r + -c rB." (23)

E dr C (24)

R
c

with B8 given explicitly by the integral of (20):
r r

rBe 2+ A d dr'r+EJ.  (25)
+ c fdracz

0 0

Here, E is taken to vanish at r = R This cutoff radius for E isz c z

mathematically necessary to give the beam a finite inductance per unit

length, and it corresponds physically to the radius at which the con-

ductivity becomes too small to cause charge neutralization. Normally

R is determined by the extent of induced breakdown around the beamC

11



head and is large compared with the fully pinched radius RL. Since

the cutoff radius enters the field equations only logarithmically, we

take R to be constant. When 1-0<<l, (23), (24), and (25) reduce
c

approximately to the single equation

r r r r

+ U + drr dr 1 + 2 dr'r dr (26)8 c c v 5T"1 1 ;

0 P0 R
c c

with the supplementary relation

E r '(27)

R
c

For typical high-y beams, we find that 1-8 < 0.2, justifying the use of

(26) and (27). We note that 1-8 is retained in (13) and (14): where

it is obviously important.

To obtain equations for Tr -u) and z I we choose specific

self-similar expressions for n, uand a with the form of (3), and

average the field equations (26) and (27) according to (9). Since the

number density of a rlativistic beam in an initially uniform neutral

gas changes from an approximately Gaussian radial envelope

Nb
nr, ) b) exp (-r2/R2 ) (28)

in the freely expanding head to a Bennett profile
8

Nb 1
n b(r'4) - wR(4) (1 + rz/R 2 )2  (29)

in the pinched region, either of these forms might be used for ne. In

most numerical calculations, we use the Gaussian profile (28). For

12



comparison, calculations are also carried out using a cutoff Bennett

distribution,

nb(rC) = 1.255 R( )(1 + r/R2)Z , r 4 1.98R,

(30)

nb(r,;) - 0, r > 1.98R,

and a square distribution,

Nbnb(r,) % R , r < 2V2R,

n(r ,T) = 0, r > 21/2R, (31)

where the cutoff radii have been chosen so that <r 2 > = R2. We show

later that the calculated erosion rates and axial profile are not

sensitive to the form chosen for n

The pinch force u is assumed to have the same radial dependence

as rB8 for the beam current alone. This choice is equivalent to

assuming that fractional neutralization of the beam current and space

charge is uniform over the beam cross section. For a Gaussian beam

density profile, u is then given by

u = 2U[1 - exp (-r2 /R2 )], (32)

and analogous analytic expressions are readily found for the Bennett

and square beam profiles.

For a beam propagating into an initially un-ionized or weakly

ionized gas, the gas conductivity is due primarily to direct ionization

by the beam. The radial conductivity profile is therefore expected to

be qualitatively similar to the beam density profile. However, the

13



conductivity profile at any is typically broader than the beam

density profile at the same position, because the gas ionization is due

to the more expanded part of the beam ahead of C. In addition, such

effects as electric breakdown and beam-generated radiation can result

in broad, weakly-conducting radial wings. As with the beam density

profile, we do not attempt a self-consistent calculation of the radial

conductivity structure. Instead, we specify an analytic self-similar

form for the radial dependence of a and examine the sensitivity of

calculated results to this choice. For the Gaussian density profile

(29), we assume the form

a(r, = a(0,C) exp [-ar2/R 2 (4)], (33a)

where ais a constant between zero and unity which can be used to vary

the breadth of the conductivity profile relative to the beam profile.

We find that the results of numerical calculations are quite insensitive

to the choice of a, which justifies the use of simple self-similar

models. For beams with the cut-off Bennett density profile (30), we

use the unbroadened conductivity profile

= (0, )
a(r,;) i + r2 /R2 () 2 , for r 4 1.98R, (33b)

and for the square density profiles (31) we take

a(r,) - a(0,), for r < 2112R (33c)

The calculation of a(0,) is discussed in the next section.

The radially-averaged quantity K 4--4<>/c occurs frequently

in the averaged field equations. For each of the three beam profiles,

14



it(C) is related to aL0,C) by

( ) = (i+c)- 4na(0, )/c, Gaussian, (34a)

ic() = (0.415) 41ra(O,C)/c, cut-off Bennett, (34b)

K() = 41rc(O,;)/c, square. (34c)

With these assumed radial dependences, a straightforward but

lengthy calculation gives the radial averages of (26) and (27). For each

of the three radial density profiles the equations take the form

A + B -- CU K: -_ U (35)
d% 2 d4 cJ

= - - (XU) dR + D -- (36)z d-. R d4 d'

where A E tn(R 2/2). For a Gaussian density profile with thec

conductivity profile (34), the coefficients in (35) are

A 2 + a X + Zn /I--- a + Y,]IR 2 , (37a)4(1 + c)

B 2 +c 1 + 1 + + t( 1+2t).+ Y'E] I2R2 } -R dR (37b)2T 2 (1+2a) 2 Cl+al I) d4R , 3b

2+ ~ ~ 1 R 1d2a OL (i R )2 ]

C =! (1 + 12R2) L + d - I-R2 d =d 22 d' ' (37c)

D - Ln 2 + yE ,  (37d)

where yE - 0.5772 is Euler's constant. For the cut-off Bennett

density profile with a Bennett conductivity profile of the same width,

we find

15



A m (0.36X~ + 0.51) icR2, (38a)

2 d.R (38b)
Ba1.59 + (0.46X + 0.lS)KcR 0.9licR T

C (1.50o + 0. 70,K 2 R) IdR -) 0.45 1;d 2 R _ 0.d4 IL! 2 KT (38c)
R dC R CT U IR dC

D -0.111. (38d)

when the density and conductivity have square radial profiles extending

to 2112R, the coefficients are

1 2 4 d

B - 1 + 1 1) - tn2)'c2 R2 
- iR -(39b)2 3 3 dC

C = (2 + 1. 'C2 R2 ) I + 2- ic R d2R(3c
3 R dC 3 d 2 (3c

D --en 2 -- (39d)
2*

16



D. Conductivity Equations

The processes governing the evolution of the gas conductivity

can be modeled at various levels of completeness and accuracy. In this

work, we use the simplest model which is appropriate for weakly-ionized

gases, the regime of principal interest to us. In this regime, the

conductivity is related to the background electron number density ne by

n e2
e (40)

mU
m

Here, V is the electron-molecule momentum transfer collision frequency,

which is proportional to the gas density and only weakly dependent on

electron temperature T e . For dry air,

112 1/2 -1
V 1.4 x 10 T p sec , (41)m e

where T , in units of eV, is between 0.5 and 10, and p is the aire

density normalized to the density of air at standard temperature and

pressure,

We model the electron density as

an

at- A2 (Te) n e + A3 (T e)pn, (42)

where the first term represents direct ionization by beam electron

impact, the second term represents three-body recombination and the

third term represents ionization by secondary electron impact, the

process which leads to electric breakdown. Since A1 is independent of

T and the temperature dependence of A2 is fairly weak, we take both

Te
17



coefficients to be constant. In contrast, A3 increases sharply with

T , particularly for T e 5eV. To model breakdown accurately, wee e

would either have to include an equation for T in the formalism or

use some phenomenological relation giving A3 in terms of quantities

that determine Te , such as the ratio of electric field to gas density.

We note, however, that for P 0.1, secondary ionization is usually

only a small correction to primary beam ionization, except in the

radial wings outside the beam. The reason is that Te is large only in

front of the pinch point where substantial Er and Ez fields occur, but

ne is small enough here that primary ionization dominates secondary

production. We therefore ignore the A3 term and use temperature-

independent approximate values of A2 and v . We then use (40) and

(34) to rewrite (42) with r = 0 as an equation for the radially

averaged quantity c

A, 1.lIbi A- C2(3
2 (43)

where

4e2i1
A1 = in mc2 V (44)

m (v m/p) A2
A2 = n2  4we2  '(45)

and n and n2 are geometric factors, given by

Ul + a)-1 Gaussian

ni 0.520 , cut-off Bennett (46)

0.5 , square

18



1 + a , Gaussian

T2 = 2.41 , cut-off Bennett (47)

1 , square

Values of Al, A1, and vm /p are shown in Table 1 for several gases at

T = 2eV. The recombination rate has little effect on either beam
e

head erosion or beam structure near the head, the principal subjects

treated here. In all calculations presented in Sec. III we use a

typical value for air A2 = 8.7 x 10
- 6 . We note that as C ,

approaches an asymptotic value given by

icR -( 2  )/2(48)

Our interest is principally in the regime where K R >> 1. For large

the beam space charge is then neutralized, the beam pinch force is

magnetostatic, and the magnetic decay length is long compared to the

beam radius. For air at standard density, i R > 100 if lIbi > 0.3kA,

and the assumption that the air be weakly (: 1%) ionized is satisfied if

I I /R 2 < x 10 3 kAcm 2 .

19



E. Boundary Conditions

The envelope equation (13), energy equation (14), field

equations (35) - (39), and conductivity equation (43) form a complete

set of equations for R, Y, U, eh, and K. Since the R and U equations

are second order and the 4z equation is zero order, six boundary

conditions are required. For a highly relativistic beam, the fields

ahead of 0 vanish, so appropriate boundary conditions for ic and U are

U(4 0 U = 0 (49)

ICo E Ko > 0 ,(50)

where the subscript zero hereafter labels quantities at C = . The

initial conductivity K may be chosen to model any degree of pre-

ionization.

To obtain boundary conditions at the beam tail L. we assume

that the tail is far enough behind the pinch point that the beam is in

quasi-static force balance at The appropriate boundary conditions

are then

(C L YL' (51)

R(;L) = RL, (52)

_ _ 4 TT 1 (53)
L d (LU) I

U( L) UL = , (54)

where e = yLULRL2 is the beam emittance at L" To relate C to the

20



beam source characteristics, we assume that electrons at CL have not

undergone significant ohmic energy loss. This assumption is usually

a good approximation because ohmic dissipation is found to be concen-

trated ahead of the pinch point. If single particle energy loss

mechanisms and beam-gas scattering are then neglected, y L and e are

equated with the values at the beam source. If energy loss

by ionizing collisions and bremsstrahlung are included, the slow

variation of y with the distance of the beam tail from the source is

given by9

and the slow variation of , due to scattering, is given by7'I0

2 42 R2 2c2 tC (56)
dz 0 (56)

r

where is the electron bremsstrahlung radiation length, given by9

r

-l e2 Ie 2 \ 2
X -i = 4 n Z(Z + 1) S2(2 ) n (18 3Z- V 3 ) , (57)r 0 \ mc

W rz3eV, and n and Z are respectively the number density and effectivero

nuclear charge of the background gas. In air at standard density X r 270r

meters, and the second term in (55) is of the order of 200-300 keV/m.

By adjusting the boundary values at L in this way, we can account for

the slow variation of yL and e with z due to single particle processes,

while including the fast variations due to collective fields directly

in the beam equations.

It is frequently convenient to consider a "semi-infinite"

beam, i.e. one which is long enough so that the plasma return current

21



has effectively decayed away at the tail, In this case

UL = U = Ib/c ,  
(58)

and the boundary conditions (53a) and (54a) become simply

2= 2 c (52)
YL

dR~ 0. (53)

A highly relativistic beam of finite length can always be regarded as

equivalent to the front end of a "semi-infinite" beam with properly

chosen values, y. and R at = , since information propagates only

backward in the beam. Thus the idea of a semi-infinite beam is quite

general, and it is convenient to use R , y, and U, as scaling factors

for dimensionless coordinates.

Although the boundary conditions (49) - (54) are sufficient

to determine the five quantities R, y, U, z ' and K as functions

of C, one further constraint is needed to determine the pinch point

velocity $c. This additional condition follows from the requirement

that a steady state exist. After the transient initial beam head

expansion, the beam axial profile should approach an isomorphous limit

as the radius at the head R0 continues to increase, and B should

approach some limiting value. In our time-independent formulation, we

must therefore find solutions with

R0- >> i,

and require that B be insensitive to the exact value of R0 in this limit,
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F. Solution of the Equations

The nonlinearity of the beam equations and the mixed boundary

conditions preclude solution either by standard finite-difference

methods or by numerical integration. Instead, we use the

iterative method summarized in Fig. 1, which is convenient for the

"semi-infinite" beam model discussed in Sec. IIE. We define E

- Co, and choose a test value of 8, which we denote by 8. We then

calculate the beam axial profile over an interval 0 < < L that is

chosen large enough that all quantities effectively reach their =

values. To start the iteration, we take U to have the form

(0)
U U (1 - exp C- -) + - exp (-i)] (59)cc L L

where we use parenthesized superscripts to identify the successive

iterates. This expression satisfies the boundary conditions U0 = 0

and UL = U , and the coefficient E can be chosen to give a suitable

scale length. We calculate R (0 ) and y (0 ) by numerically integrating

the envelope equations (13) and (14) from = L, and R.0) is then used

in integrating the conductivity equation (43) from = 0. Since the U

equation (35) is a linear ordinary differential equation with known

boundary values, it is readily reduced to tridiagonal matrix form and

(1)solved numerically for the first iterate U( . This sequence of calcu-

lations is repeated until no significant change in the beam axial

profile occurs with successive iterations. Since the only undetermined

boundary value is the beam head radius R0 , a convenient criterion for

iteration convergence is that the quantity JRRn+l) - R0n)I/R
(n)
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be less than some prescribed error limit for one or more successive

iterations. This procedure is found to converge reliably for KR> 1

and R 0/R. ! 50, provided that the finite-difference grid in the U

calculation is fine enough to resolve the beam head structure.

To determine the pinch point velocity, we systematically vary

B to find solutions of the beam equations with R /R >> 1. Figure 2

shows a typical plot of R0 vs 8. The increase of R0 with 8 occurs

because the velocity of beam electrons relative to the pinch point,

v - V P (l-)c, is reduced as 8 increases. Consequently, beamz p

electrons traversing the pinch region are subjected to the induced Ez

there for a longer time, and the resulting reduction in y drives radial

expansion. The upper limit of 8 is reached when the energy loss

approximately equals the initial kinetic energy (y -l)mc 2 . This

value maximizes R /R , and the corresponding value of ic should equal

the physical pinch point velocity V = $c, provided that the assumptions

1-8 << 1 and Rc/R2 << 1 are also satisfied. Because R increasescO0

sharply as 8 8, the limiting value is easily estimated and, as

required, is insensitive to the calculated beam head radius. The

erosion rate, defined as the speed at which the pinch point recedes

from the beam head, is then v - V p (l-8)c.
z p
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III. Analytic and Numerical Results

The basic equations (13) for R, (14) for y, (35) - (39) for U

and z , and (43) - (47) for K are quite complicated, and the depend-

ence of the erosion rate and other quantities on the beam parameters is

not immediately evident from these equations. However,a simple formula

for the erosion rate can be derived when corrections of order X-1 =

[Rn(R2 )]-i are neglected. Using this formula and again neglecting

terms of order X-1 , the equations for R, Y, U, ez and K can be written

in a much more concise dimensionless form that displays the parametric

dependences. These simplified equations, together with data obtained

from numerical solutions of the equations, show that the essential

features of the axial profiles R( ), y( ), U( ) and K(C) can be

described in terms of scaling with the dimensionless parameters which

control the background conductivity. This program will be carried out

in the remainder of this section. The approximate analytic results

and scaling relations will be compared to extensive exact numerical

solutions of (13), (14), (35)-.(39), and (43)-(47) obtained by methods

described in Sec. II.
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A. Erosion Rate

When a steady state exists, a scaling law for the erosion

rate follows almost immediately from the equations that determine

energy flow along the beam. Approximate scaling laws have previously

been obtained1 ' 2 by a similar argument, in which the ohmic energy loss

of the beam is equated with some estimated fraction of the kinetic

energy lost through erosion.

The electron energy as a function of [ is given by the

integral of (14),

( - T = (.8)mc 2  f_ d ( . (60)

0

Here, the time variation of y is due to ohmic loss and the steady state

assumption has been used to express it as a C variation. From C36),

4z is given by

d (\U) (61)
z d

where the last two terms of (36) are neglected, since they are smaller

than the first by a factor of order X-I <<l. Substituting (61) into

(60) and using U = 0 then gives the dimensionless erosion rate

1e (-)PBO) (62)

for any 4. If ; is well behind the pinch point, then X( ) f X. and

U( ) In(;)/c, where the net current I is the beam current less then nl

plasma return current. Moreover, y() >> 7o for all cases with
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y() >> 1, as discussed in Sec. IIF and shown in what follows. In

such cases, (62) reduces to

1 - In (63)
=M -m -y (o) ,(3

which shows that I In /y is approximately constant behind the pinch

point. For a semi-infinite beam, defined as one that is long compared

with the magnetic decay length, we can evaluate (63) at C = -, where

Tn = Ib and y is also known. We then obtain an explicit formula for

the erosion rate,

e XIIb -- Ib (64)1 8 mc3 Y. IA  (4

The last expression relates the erosion rate to the familiar ratio of

Ib to the Alfv~n current IA *

The argument leading to (64) is valid only when 1-8 is small

because the ez relation (61) was derived by assuming that 8 1. A

more general derivation given in Appendix A shows that

1ci +MCle  
(65)

which is valid for any 8, and reduces to (64) when I - 8 « 1.

Numerical solutions of (13), (14), (35) - (39), and (43)-(47),

in which the beam current and ionization coefficient A are varied

over two orders of magnitude, substantiate the accuracy of (64). The

erosion rate is quite independent of the coefficients that govern

conductivity K (t), even though these coefficients strongly affect the

dependence of R, K, U, and y. The erosion rate is also insensitive

to the choice of beam profile (Gaussian, Bennett or square) and to the
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parameter a in (33a), which strongly varies the width of the conducting

channel. Table 2 compares calculated erosion rates with values given

by Eq. (64) for a very broad range of y, with K = 0 (initiallyo

neutral gas) and conductivity coefficients given by Table 1 for air.

Other beam parameters are chosen to typify the new generation of

linear induction accelerators being developed at Lawrence Livermore

Laboratory. The calculated values of 1 - 8 are consistently about

13% below the estimates. This inaccuracy is within the error expected

from the estimate (61) of t The scaling of 1 - 8 with Ib, y, and

X is accurately predicted by (64).

The erosion rate expression indicates that the existence

of a steady non-zero erosion rate depends on ohmic energy loss: if

Y() - Y vanishes, then (62) gives the physically meaningless result

1 - 8 = =. We have verified this dependence by redoing the numerical

solutions with y held constant, rather than being determined by (14).

The steady state model fails to produce a meaningful solution in this

case. We believe that expansion and erosion of the beam head will

occur even if y is held constant, but not as a steady-state process.
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B. Dimensionless Equations

Numerical solutions of the beam equations (13), (14), (35)-

(39), and (43)-(47) over a wide range of parameters indicate several

approximations that can be made with little loss of accuracy in the

calculated quantities R(;), K(;), U( ), y( ), and the erosion rate 1-B:

(i) The choice of radial beam density profile nb(r) has

little effect on the results. When profiles are calculated using

Gaussian, Bennett, and square density profiles, the corresponding

quantities typically differ by less than 3%.

(ii) Varying the parameter a in (33a), which controls the

shape of the radial conductivity profile, has a comparably small effect

on results, even though a = 1 corresponds to a conducting channel of

the same radius as the beam, while a = 0 corresponds to a constant

conductivity out to a radius R which is orders of magnitude larger.c

(iii) The terms in the field equation (35) which arise from

displacement current terms in (15) and (16) also affect the results

by only a few percent, provided that All Ib Z 0.1. Neglecting these

terms eliminates the second derivative in (35) and greatly simplifies

the equation. We could not have predicted the validity of this approxi-

mation from the equations. Due to the very rapid variation with in

the beam head, the displacement current terms are not obviously

negligible.

(iv) Calculated axial profiles are insensitive to parameter

changes that alter the erosion rate but leave the conductivity
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generation rate unchanged. When y. is varied between 50 and 1000

while other parameters are held constant, R(C), U(C) and c( ) are

effectively unchanged, even though 1-8 changes by more than an order

of magnitude.

We now use these results to write the beam equations in a

much simplified dimensionless form. For specificity, we consider a

Gaussian beam profile and a flat conductivity profile (a = 0).

According to i) and (ii), the results are not sensitive to these

choices. In (35) and (37) we neglect the displacement current terms

discussed in (iii), as well as terms that are corrections of order

X We explicitly use (-64) for 1-8 in Eqs. (13) and (14). Finally,

we choose a suitable set of dimensionless variables,

SU/U cU/ , (66a)

S- R/R ,(66b)

Y- y/Y, (66c)

K K, (66d)

-/R. (66e)

Equations (13), (14), (35)-(37), and (43) can then be recast as

d5 1 [ _ 4 (1 + .1R22 (67)
d 1 + I 2j- 8 dZ

dC' d X (1-0) i 68
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dy 1LE) (69)

X d

dZ j2 - A 2 P (70)

where

E A11 . (71)

In this dimensionless form, the quantities U(E), Y (r), R(),

and C (?) depend only the dimensionless parameters 1, A2 , 1-8,

and the dimensionless pre-existing gas conductivity Ko- KoR , if K
0 M 0

is nonzero. However, the results are insensitive to 1-8, as discussed

in (iv). This results from the structure of (68): Since R >> 1 and

U0 near the beam head, (68) reduces there to ydR/d - constant. In

the pinched region ydR/dC is small and slowly varying, so that the

envelope equation gives the quasi-equilibrium condition R (U)1/2.

For any U(), therefore, the erosion rate enters (68) only in the

smooth transition between these limits. Also, since we are interested

principally in the beam structure around the pinch point, where

recombination is typically unimportant, the recombination coefficient

A can be neglected in analyzing beam scaling. We thus conclude that2

the axial profiles depend significantly on only two parameters, ji

and initial c value, 'C.
0
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C. Axial Profile of the Beam and Conducting Channel for K = 0
o

1. General Considerations

We have solved the equations of Sec. II for cases ranging

from V = 0.1 to U = 100. The C dependence of the principal beam and

channel features is shown in Fig. 3-5 for three typical cases with

= 0 and u = 0.32, 3.2, and 32, corresponding approximately to 1, 100

and 100 kA beams in initially un-ionized air at standard density. In

each case the beam has two distinct regions, an expanded head and a

self-pinched body, with quite different structure and scale lengths.

we shall proceed by showing how each of several beam properties differs

qualitatively between the two regions and defining a transition point

between the two regions for each property. These various transition

points typically lie close together, as seen in Table 3.

At the beam head, where the gas conductivity is zero, the

magnetic pinch force is canceled by electrostatic repulsion due to the

beam space charge, leaving U = 0. As we move back from the head of the

beam, i increases and the space charge begins to be neutralized by the

radial outflow of plasma electrons. Nevertheless, U is so weak through-

out the head region that the beam head expands freely, constrained only by

its own inertia. Within our steady state model, this rapid beam head

expansion appears as a large value of Idi/dZI. In the self-pinched

region, on the other hand, the space charge has been completely

neutralized, the beam is in pressure balance with the pinch field U,

and I di/dZI is small. It is therefore natural to define the point

where dR/d# -  C(.2 /dZ 2 ) is maximal as the pinch point p.
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The rapid increase in U near Z causes a substantial
p

induced E field, as is evident from Eq. (61). Beam electrons passing

through this Ez "spike" lose energy rapidly, and conservation of

relativistic momentum ymr leads to rapid expansion of the beam ahead

of the E spike. Thus the point e at which E is maximal typically

is close to .
P

Since K increases rapidly with C, the E spike drives az

plasma return current I . Figs. 3-5 show that I I p/b increases rapidly

just as the space charge is being neutralized and reaches a maximum

at a point iwhich is close to but somewhat larger than e because

of the steadily increasing conductivity. As increases further and

we enter the beam body, I falls off, but if i > 1 this decrease isp

slow because of the rapidly increasing conductivity. In the beam body,

where there is no space charge, the normalized pinch force U reduces

to c <rBe>/Ib and is equal to the normalized net current I 1 - I
n p

then approaches unity with a scale length1 X'c2 determined by

resistive diffusion, as is evident from (67). By contrast, the scale

length in the expanded head is determined by the conductivity gener-

ation rate 4-2 and is typically much shorter.

Even though Figs. 3c, 4c, and Sc show U( ) increasing

smoothly and monotonically, comparison of the U(Z) and I () curves

shows the abrupt change in the nature of the pinch force near 4p: in

the expanded head, electrostatic forces reduce U by partially

cancelling the magnetic pinch force, but U is purely magnetic in the
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beam body. The onset of plasma return current and the rapid decrease

of space charge occur in the region where K2R2 lies roughly between

8X-1 and 8, in which the 2i2 terms in (67) begin to dominate. There-

fore the point n where Xic2R2/8 = 1 represents another transition pointn

for the electromagnetic fields, and is typically also close to p.

Since the pinch force is in quasistatic equilibrium with

the beam pressure throughout the beam body, (68) gives U5R 1 in

this region. In the expanded head, where the pinch force is too weak

to confine the beam, UYR <<. Figures 3b, 4b and 5b show a fairly

sharp transition between these regimes. We arbitrarily define a

transition point q where UyR 2 = 0.95. The location of q is of
qs qs

some significance, since it delineates the regime in which a quasi-

static model of beam equilibrium is valid, for use in stability theories,

for example. Although qs is always fairly close to P , we find that

Cqs < p for v s 1 and Cqs > p for u > 1.

The relative value of, n' i' e and Cqs are given in

Table 3, over a large range of V. Several other beam properties are

also summarized in Table 3, and will be discussed in the next sections.
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2. Validity of the Steady State Assumption

In an actual beam, the radius R at the beam head
0

increases constantly with time, which is not strictly consistent with

our steady state treatment. However, our treatment is based on the

premise that, when R has become much larger than the pinched radius,o

the value of R has a negligibly small effect on all beam properties

in the region of interest, where R << R . This premise was supported0

by the observation in Sec. IIF that as 0 8, large changes in R
0

correspond to very small changes in 8. It is also necessary that R( ),

y() and () converge to steady state values when R > R, where R0 p p

is the radius at the pinch point. This requirement is also found to be

well satisfied in the numerical solutions. As an example, Fig. 6 shows

R( /R ) for a typical case, obtained by the method described in Sec.IIF,

using three slightly differing value of 8. Even though the 8 variation

results in very different values of R R(/R profiles are nearly

identical when R 0 10R . We may therefore describe the time during

which the beam propagates from its source until R reaches the order0

of 10R as a period of transient beam head expansion. Time-dependentP

treatments have indicated that this initial transient expansion occurs

considerably faster than the steady state erosion that follows.
1 5
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3. Scaling of Beam Profile and Fractional Return Current

with u

In the beam body, the degree of beam pinching, i.e. the

value of the dimensionless radius R, depends on the fractional plasma

return current I . Although it is always true that R - 1 and 1 - 0p p

as becomes very large, the values of R at Z and of I at itsP P

maximum point i are indicative of conditions over a substantial

length of the beam body: A beam is tightly pinched throughout the body

if R(; )l:1, whereas a beam with R(C ) >> 1 may be described as weaklyp p

pinched. The numerical results tabulated in Table 3 indicate that

R( ) 1 + ( (72)

P

for 0.1 < u 4 100. A beam is therefore seen to be well-pinched if

< 1 and weakly pinched if v > 1, in agreement with many experimental

observations that beams tend to be weakly pinched when the conductivity

rises too rapidly.

Figures 3-5 and Table 3 further suggest that the axial

profiles R( ), U([) and Z(;) can be characterized in the region

< p by very approximate self-similar expressions with . as a

scaling parameter. To obtain such scalings, we assume forms

n
- f 1 (m ) (73a)

n
n 2 f 2( ) , (73b)

I) f (73c)

3
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and we neglect both the recombination term A222 in (70) and the
2

2W terms in (67). We choose the coefficient n1 to be consistent with

(72) and require that n2 = - nl, so that the beam can reach quasistatic

equilibrium at C * To satisfy the requirements of self-similarity,

we must also choose the radius R at the beam head to be some fixed
0

multiple of R • The only possible scaling of (67) - (70) that is con-p

sistent with these requirements is

= 1 (V1/2 ) (74a)

f 2f (01/2Z), (74b)

= I'/2f3 (U 3 /2 ) (74c)

for u << 1, and

R= F (=), (75a)

UF ), (75b)

= -1F 3  (7c)

for u >> 1. Neither scaling is exact, but both are useful, and the

numerical solutions illustrated in Figs. 3-5 and Table 3 verify their

approximate validity.

These scaling laws yield several types of information about

the beam evolution. (i) They indicate how the axial profile of the

beam depends on the parameter u: the "trumpet" shape of the expanded

head becomes more extreme as u increases. (ii) We have argued that the

beam passes through a transient period of very rapid expansion, during
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which Ro increases to approximately 10R( p), before the steady state is

established. The extent in Z of the expanded region is thus equal to

p when Ro 0 10R(C ). The scaling relations (74) and (75) indicate

that this region scales as v for y < 1 and reaches a constant value

for u > 1. However, (75) also indicates that the body of the beam

expands a great deal if u >> 1. (iii) An electron which was originally

located in the pinched body of the beam, C > C , but which later finds
p

itself in the expanding nose as the pinch point moves back into the

beam, will in general escape radially at a velocity less than its

original transverse thermal velocity, because the expanding beam does

work against the magnetic field. According to (74) and (75), the

escape velocity scales as

) C cc1 A < 1(76a)

cc > 1. (76b)

38



D. Axial Profiles and Scaling for K 0 0
0

When the background gas is sufficiently preionized to

neutralize the beam space charge, the beam still has a freely expanding

head and approaches steady-state erosion. However, the fields are

quite different from a case with K = 0, and we find significantly
0

different scaling laws. Since Ai2 R2/8 :< 1 for C < C when io = 0, a
p 0

condition that i dominate beam-generated conductivity for all < C
o p

is that

X 2j2 /8 > 1, (77a)
o po

where R is R(R ) for the beam when K = 0. Using (72) for Ro this
PO p 0 O

condition becomes

0 2/8 > 1 , if P < 1, (77b)

X- 2 2/8 > 1 , if jI>i. (7?c)0

When (77) is satisfied, the beam is space-charge neutralized

essentially everywhere, so that U = In . Nevertheless, U = 0 at the

beam head because the plasma return current generated there completely

cancels the beam current. The absence of a pinch force at the beam

head leads to free expansion of the head and subsequently to steady

state erosion, just as in the case with Ko = 0. Although the erosion

rate is independent of both Kc and V, as we have seen in Sec. IIIB,

the R(;) profile is modified by Ko. As long as K ic, the scale

lis X 2W. The only possible self-similarlength for the rise of In is
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scaling for R( ), In (), and U( ) is then

R(4) = fl( / O) (78a)

In( ) n U() = f 2(C/K ), (78b)

where f and f2 are independent of u. The beam pinches down more

slowly than in un-ionized gas, and so for any value of , R( ) is

larger than it would be for K = 0. These features are illustrated by
0

the plots of R( ) and I ( ) in Fig. 7 for cases with p = 0.2 and in
n

Fig. 8 for p = 5.

For cases in which 'C is nonzero but not large enough too

satisfy (77), the pre-existing conductivity can modify the beam

properties in a limited region of the expanded head, but will have

little or no influence on the beam body. For sufficiently large Ro'

even a small 'C can result in a value of iCR near the beam head largeo

enough to neutralize the space charge there. However, XK2j2/8

decreases at large values as R decreases, and space charge forces

can reappear at some < 4. This results in the somewhat complicated

n ( ) curves for K = 0.07 in Figs. 7b and 8b. When p < 1, Eq. (74)n o

indicates that the beam tends to pinch down faster when conductivity

is increased. Thus a small non-zero value of 'C increases dk/dC]0

near the beam head, just as a small increase in v would. However, in

the part of the beam where K > 0 the R(4) curves have the form they0

would have for K - 0 but are shifted toward the head, as Fig. 7a shows.
0

In particular, R(Z) at and behind the pinch point is unchanged by 'C
0
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When P > i, dR/dec is insensitive to small changes in conductivity,

and if (77) is not satisfied the entire R(Z) curve is essentially

independent of i , as seen in Fig. 8a.
0
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IV. Summary

The pinch frame formalism presented here is an efficient and

conceptually simple method for calculating the beam head erosion rates

and axial profiles of relativistic electron beams. The principal

shortcomings of the method are the non-selfconsistent treatment of

emittance and energy changes due to collisions and radiation, and an

inability to model early transient expansion of the beam head. None-

theless the formalism gives usable information about beam structure

and an unambiguous erosion rate value without requiring time-dependent

calculations.

We have examined relativistic electron beams with a wide range of

parameters and can make several generalizations:

1) If energy loss and expansion from collisions and radiation are

neglected, erosion continues at a steady rate after initial transient

expansion of the head. For a constant-current pulse, this rate is
X. I n(W
( ) 17kA c,where is any point well behind the pinch point. The

radial dependences of beam density and conductivity and the maximum

radius of the conductivity channel R affect erosion rates only weakly

by altering the beam inductance A.

2) When the background gas is initially un-ionized and the

current is high enough that R >> 1, then the beam axial profile

near the beam head is controlled principally by the dimensionless

parameter U = 4irR 2c-l d<a>/dC that controls conductivity generation.

For air with ionization caused by beam-molecule collisions,
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i 3 x 10- 4 13 l (2eV/Te)1/2. When ji << 1, the peak return current is

small compared with Ib# and the beam pinches to R In contrast,

the return current is comparable with 'b when U >> 1 and the radius

at the pinch point is approximately IjR..

3) When the initial gas conductivity Kc is large compared with0

bilam-generated conductivity throughout the beam head, the beam space

charge and c-urrent are neutralized essentially at Co. The beam pinches

with a scale length XK 0 2/8. Although there is no distinct pinch0

point, beam head erosion proceeds at the same rate as for i = 0.
0
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APPENDIX

The erosion rate calculations in Section IIIA are limited to con-

ditions for which (-J-L3- 0.2 by the Sl approximation made in deriving

the field equations (35)-(39). We can estimate the rate for lower

[I Ib1/y values by using the field equations (23)-(25), which do not

assume B8z1. Integrating (24) over the entire beam gives

d; ) 2 [BI (r) + (1-B) I (r)] , (A.)r rfd Ez~r c 0

where we have used the boundary values E (r,O) E (r,-) = 0 and
z z

u(r,-) = rB8 (r,-) and have eliminated rBe with (25). If we assume that

the left side of (Al) has the same radial dependence as I(r), then the

equation can be radially averaged at = to give

d; f (E/ 2 [<Ei>2 > + (I-B)<I >] (A2)(%o)1/2 f (c" 0/

where <I(r)> = I b for any of the radial density profiles treated

here. Since I (r) is the current within radius r at the expanded beam

head, the average of I over the number density at = is smaller
0 2

than 1b/2 by approximately the ratio R2/R O << 1, and the <Io> term in

(A2) is negligible. If we again ignore the change of inductance along

the length of the beam, then we may set X(4) X. in (A2) and obtain
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OX1 :b-V (AZ)
€c

o

0

Substituting this approximation into (3.1) gives

SeX. "b'
8 e1- mc3 , (A4)

which differs from the B = 1 result (3.4) only by the B factor on the

right side. The corresponding expression for the limiting erosion

rate is

This expression agrees with (64) for 1-6 << 1 and should be valid

over a wider range of lIbi and y.. The principal restriction on (A5)

is that y. must be large enough that the ultrarelativistic approxi-

mation v c is satisfied over most of the beam.
z
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Table 1. Typical v/p values and direct-ionization coefficients

for air, He, Ne, and Ar. A background electron

temperature of 2eV is assumed.

Beam Al 1 A1
Energy V -1 1 -1 2 1

Gas (MeV) (sec ) (cm sec )

Air 50 2.0 x 1012 6.0 x 1020 0.34

Air 5 2.0 x 1012 4.3 x 1020 0.24

He 5 1.3 x 1012 2.9 x 1020 0.25

Ne 5 3.2 x 1011 1.3 x 1020 0.45

Ar 5 2.0 x10 11 2.4 x 101 9  0.14
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Table 2. Comparison of calculated erosion rates with analytic
estimates for R = 0.2 cm and Rc = 20 cm. The para-
meters Ib and R where chosen to fall in the range
spanned by the new generation of linear induction
accelerators at Lawrence Livermore Laboratory, the
Experimental Test Accelerator (y "' 10) and Advanced
Test Accelerator (y 100) and to cover a broad energy
range.

Density I (KA) Calculated Analytic
Profile b 1-8 1-8

Gaussian 10 1000 4.7 x 10- 3  5.3 x 10- 3

10 500 9.4 x 10 - 3  1.1 x l0 - 2

10 200 2.4 x 10 - 2  2.7 x 10 - 2

10 100 4.8 x 10 - 2  5.5 x 10 - 3

10 50 9.6 x 10 - 2  i.l x i0 - I

10 20 2.6 x 10-1 2.8 x 10 - I

20 100 9.6 x 10 - 2  1.1 x 10 - I

5 100 2.4 x 10 - 2  2.7 x 10 - 2

Bennett 10 100 4.3 x 10- 2  5.5 x 10- 2

Square 10 100 5.4 x 10-2 Z.5 x 10- 2
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Table 3. Profile data for beams in initially un-ionized gas. In
each case S 0.05. For p = 0.1 to 32. R0  10R( ) is
chosen to facilitate comparison with the self-similar
scaling laws (74) and (75). For pi = 100, Ro << 10R( p)
is used for reasons of numerical efficiency, and as a
result all points are shifted toward zero.

i i( p P (5zp) pi ) p Zp 'n - qe ls

0.1 11.4 1.1 1.0 0.09 56 50 45 46 29

0.32 13.5 1.3 1.0 0.20 36 27 29 32 20

1.0 21.5 2.1 1.2 0.41 27 19 24 27 21

3.2 50.6 4.7 1.9 0.64 24 18 23 28 25

10 121.9 11.9 4.1 0.82 21 16 22 30 30

32 293.2 29.1 10.4 0.91 21 20 22 31 35

100 324.8 94.1 53.5 0.98 4 6 7 18 46
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Fig. 1 - Method of solution of the steady-state beam equations
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